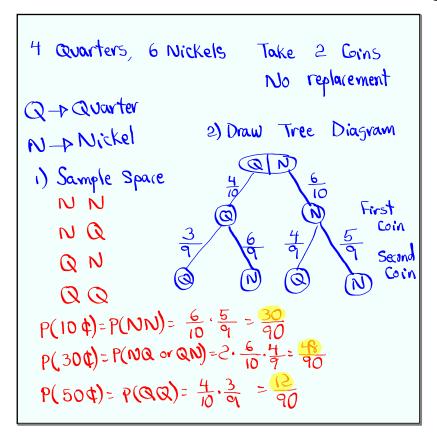
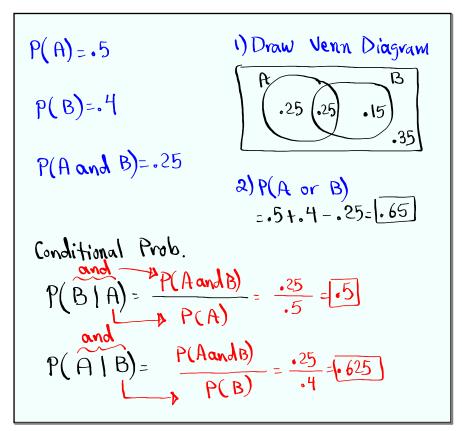


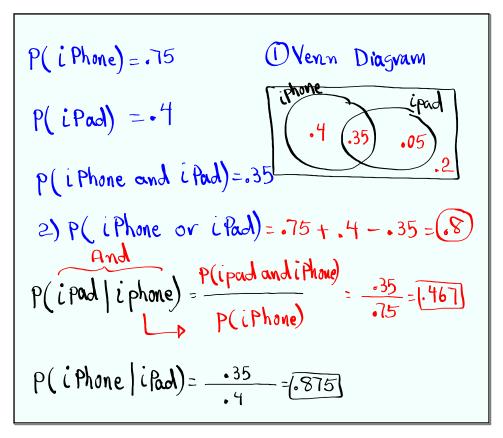
Feb 19-8:47 AM



Oct 9-12:11 PM


Oct 9-12:25 PM

# tails	P(#tails)	# tails -> LI
3	.027	P(#tails) -DL2
2	.189	
7	.441	use 1-Var Stats with
0	.343	LIELZ, find
		Sx = blank
		n=1 = Total Prob.



Oct 9-12:41 PM

Total 4	P(Total 4)	
10¢	3%0	Total & ->L1
30¢	48/90	P(Total &) -> L2
50¢	12/90	use II - Var Stats
		with LI = L2 to find
		\(\frac{7}{\tau} = \frac{26}{}
		Sx=Blank
		$\gamma = 1$

Oct 9-12:53 PM

Use your calc

1)
$$6^{\circ} = 1$$

3) $12^{\circ} = 792$

2) $6^{\circ} = 1$

4) $12^{\circ} = 792$

5 Females, 10 Males Select 4 people order does not

P(AII Females) = $\frac{5^{\circ} + 10^{\circ}}{15^{\circ} + 10^{\circ}} = \frac{5}{1365} = \frac{1}{273}$

P(AII Males) = $\frac{5^{\circ} + 10^{\circ}}{15^{\circ} + 10^{\circ}} = \frac{210}{1365} = \frac{2}{13}$

P(at least 1 Female) = $1 - P(No \text{ Females})$

= $1 - P(AII \text{ males})$

Oct 9-1:13 PM

Suppose Sind P(A and B)

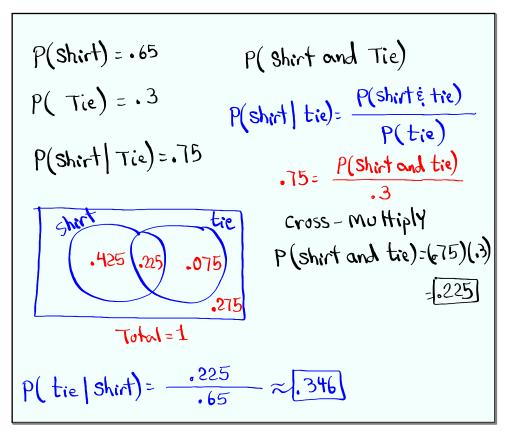
P(A)=.6

P(B)=.5 P(A | B)=
$$\frac{P(A \text{ and } B)}{P(B)}$$

P(A | B)=.8

P(A | B)=.8

Cross-Multiply


P(A and B)=(.8)(.5)=.4

P(B | A)= $\frac{P(A \text{ and } B)}{P(A)}$

P(B | A)= $\frac{P(A \text{ and } B)}{P(A)}$

P(B | A)= $\frac{P(A \text{ and } B)}{P(A)}$

Oct 9-1:56 PM

Oct 9-2:01 PM

Oct 9-2:19 PM

A Sull deck of Playing Cards

Draw 5 Cards, No replacement,
order does not matter.

$$P(2 \text{ face cards and } 2 \text{ Aces}) = \frac{12^{2} \cdot 4^{2} \cdot 36}{52^{5} \cdot 5} = \frac{14 \cdot 256}{2598960} \approx 5.005$$

Class Quiz 7

6 Females, 9 Males Select 4 people order does not matter.

P(2F and 2M) in reduced fraction.

P(2F $\stackrel{?}{\epsilon}$ 2M) = $\frac{6(2.9(2))}{15(4)} = \frac{540}{1365} = \frac{36}{91}$ $\approx .396$

Oct 9-2:30 PM